158 research outputs found

    A method for evaluation of QRS shape features using a mathematical model for the ECG

    Get PDF
    Automated classification of ECG patterns is facilitated by careful selection of waveform features. This paper presents a method for evaluating the properties of features that describe the shape of a QRS complex. By examining the distances in the feature space for a class of nearly similar complexes, shape transitions which are poorly described by the feature under investigation can be readily identified. To obtain a continuous range of waveforms, which is required by the method, a mathematical model is used to simulate the QRS complexes

    Adaptive QRS detection based on maximum A posteriori estimation

    Get PDF

    High-frequency Electrocardiogram Analysis in the Ability to Predict Reversible Perfusion Defects during Adenosine Myocardial Perfusion Imaging

    Get PDF
    Background: A previous study has shown that analysis of high-frequency QRS components (HF-QRS) is highly sensitive and reasonably specific for detecting reversible perfusion defects on myocardial perfusion imaging (MPI) scans during adenosine. The purpose of the present study was to try to reproduce those findings. Methods: 12-lead high-resolution electrocardiogram recordings were obtained from 100 patients before (baseline) and during adenosine Tc-99m-tetrofosmin MPI tests. HF-QRS were analyzed regarding morphology and changes in root mean square (RMS) voltages from before the adenosine infusion to peak infusion. Results: The best area under the curve (AUC) was found in supine patients (AUC=0.736) in a combination of morphology and RMS changes. None of the measurements, however, were statistically better than tossing a coin (AUC=0.5). Conclusion: Analysis of HF-QRS was not significantly better than tossing a coin for determining reversible perfusion defects on MPI scans

    Evaluation of depolarization changes during acute myocardial ischemia by analysis of QRS slopes.

    Get PDF
    OBJECTIVE: This study evaluates depolarization changes in acute myocardial ischemia by analysis of QRS slopes. METHODS: In 38 patients undergoing elective percutaneous coronary intervention, changes in upward slope between Q and R waves and downward slope between R and S waves (DS) were analyzed. In leads V1 to V3, upward slope of the S wave was additionally analyzed. Ischemia was quantified by myocardial scintigraphy. Also, conventional QRS and ST measures were determined. RESULTS: QRS slope changes correlated significantly with ischemia (for DS: r = 0.71, P < .0001 for extent, and r = 0.73, P < .0001 for severity). Best corresponding correlation for conventional electrocardiogram parameters was the sum of R-wave amplitude change (r = 0.63, P < .0001; r = 0.60, P < .0001) and the sum of ST-segment elevation (r = 0.67, P < .0001; r = 0.73, P < .0001). Prediction of extent and severity of ischemia increased by 12.2% and 7.1% by adding DS to ST. CONCLUSIONS: The downward slope between R and S waves correlates with ischemia and could have potential value in risk stratification in acute ischemia in addition to ST-T analysis

    Adaptive QRS Detection Based on Maximum A Posteriori Estimation

    Full text link

    Disappearance of myocardial perfusion defects on prone SPECT imaging: Comparison with cardiac magnetic resonance imaging in patients without established coronary artery disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is of great clinical importance to exclude myocardial infarction in patients with suspected coronary artery disease who do not have stress-induced ischemia. The diagnostic use of myocardial perfusion single-photon emission computed tomography (SPECT) in this situation is sometimes complicated by attenuation artifacts that mimic myocardial infarction. Imaging in the prone position has been suggested as a method to overcome this problem.</p> <p>Methods</p> <p>In this study, 52 patients without known prior infarction and no stress-induced ischemia on SPECT imaging were examined in both supine and prone position. The results were compared with cardiac magnetic resonance imaging (CMR) with delayed-enhancement technique to confirm or exclude myocardial infarction.</p> <p>Results</p> <p>There were 63 defects in supine-position images, 37 of which disappeared in the prone position. None of the 37 defects were associated with myocardial infarction by CMR, indicating that all of them represented attenuation artifacts. Of the remaining 26 defects that did not disappear on prone imaging, myocardial infarction was confirmed by CMR in 2; the remaining 24 had no sign of ischemic infarction but 2 had other kinds of myocardial injuries. In 3 patients, SPECT failed to detect small scars identified by CMR.</p> <p>Conclusion</p> <p>Perfusion defects in the supine position that disappeared in the prone position were caused by attenuation, not myocardial infarction. Hence, imaging in the prone position can help to rule out ischemic heart disease for some patients admitted for SPECT with suspected but not documented ischemic heart disease. This would indicate a better prognosis and prevent unnecessary further investigations and treatment.</p

    Accuracy of advanced versus strictly conventional 12-lead ECG for detection and screening of coronary artery disease, left ventricular hypertrophy and left ventricular systolic dysfunction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resting conventional 12-lead ECG has low sensitivity for detection of coronary artery disease (CAD) and left ventricular hypertrophy (LVH) and low positive predictive value (PPV) for prediction of left ventricular systolic dysfunction (LVSD). We hypothesized that a ~5-min resting 12-lead <it>advanced </it>ECG test ("A-ECG") that combined results from both the advanced and conventional ECG could more accurately screen for these conditions than strictly conventional ECG.</p> <p>Methods</p> <p>Results from nearly every conventional and advanced resting ECG parameter known from the literature to have diagnostic or predictive value were first retrospectively evaluated in 418 healthy controls and 290 patients with imaging-proven CAD, LVH and/or LVSD. Each ECG parameter was examined for potential inclusion within multi-parameter A-ECG scores derived from multivariate regression models that were designed to optimally screen for disease in general or LVSD in particular. The performance of the best retrospectively-validated A-ECG scores was then compared against that of optimized pooled criteria from the strictly conventional ECG in a test set of 315 additional individuals.</p> <p>Results</p> <p>Compared to optimized pooled criteria from the strictly conventional ECG, a 7-parameter A-ECG score validated in the training set increased the sensitivity of resting ECG for identifying disease in the test set from 78% (72-84%) to 92% (88-96%) (P < 0.0001) while also increasing specificity from 85% (77-91%) to 94% (88-98%) (P < 0.05). In diseased patients, another 5-parameter A-ECG score increased the PPV of ECG for LVSD from 53% (41-65%) to 92% (78-98%) (P < 0.0001) without compromising related negative predictive value.</p> <p>Conclusion</p> <p>Resting 12-lead A-ECG scoring is more accurate than strictly conventional ECG in screening for CAD, LVH and LVSD.</p
    • 

    corecore